Represent the complex number z=√3+i in the polar form.
Answer:
2(cosπ6+i sinπ6)
- We have, z=√3+i
The standard polar form of a complex number is r(cosθ+i sinθ)
- On comparing z with the standard polar form of a complex number, we get,
r cos θ=√3 and r sin θ=1
Now, r cos θ=√3…(1)⟹r2 cos2θ=√32…(2)r sinθ=1…(3)⟹r2 sin2θ=12…(4) On Adding (2) and (4) we get,
r2 cos2θ+r2 sin2θ=√32+12⟹r2(cos2θ+sin2θ)=3+1⟹r2=4[Since, cos2θ+sin2θ=1]⟹r=2[Conventionally r>0] - Substituting the value of r in eq (1) and (3) we get,
cosθ=√32 and sinθ=12
⟹θ=π6 - Hence, the polar form of the complex number z=√3+i is 2(cosπ6+i sinπ6).